Quantification of neuroepithelial bodies and their innervation in fawn-hooded and Wistar rat lungs.

نویسندگان

  • Jeroen Van Genechten
  • Inge Brouns
  • Geoff Burnstock
  • Jean-Pierre Timmermans
  • Dirk Adriaensen
چکیده

The Fawn-Hooded rat (FHR), a model for primary pulmonary hypertension, shows an unexplained hypersensitivity to airway hypoxia. Because pulmonary neuroepithelial bodies (NEBs) appear to express a functional oxygen-sensing mechanism and an extensive sensory innervation, possible changes in this system should be taken into consideration. In the present study a comparative analysis of NEBs and their selective innervation was performed in FHRs and Wistar control rats. In both rat strains, the number of NEBs was estimated to be around 3,500, approximately 40% of which were innervated by vagal sensory calbindin D28k-immunoreactive (IR) nerve endings and approximately 50% by spinal sensory calcitonin gene-related peptide (CGRP)-IR nerve terminals. The number of intrinsic pulmonary nitrergic neurons and the percentage of pulmonary NEBs revealing a nitrergic innervation were highly significantly lower in FHRs. In both FHRs and Wistar rats, a remarkable morphologic interaction was observed between the intrinsic nitrergic and the CGRP-IR sensory population contacting NEBs. Our findings suggest a possible link between the hypersensitivity to airway hypoxia observed in FHRs and a reduced intrinsic pulmonary nitrergic innervation, possibly via the interaction with pulmonary NEBs and their spinal sensory CGRP-IR innervation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced reactivity of renal microvessels to pressure and angiotensin II in fawn-hooded rats.

Fawn-Hooded rats possess an increased risk to develop glomerular damage. Both an impaired control of preglomerular resistance and an elevated postglomerular resistance have been implicated. In the present study, we directly assessed the myogenic reactivity of distal interlobular arteries and afferent arterioles from hypertensive and normotensive Fawn-Hooded rats compared with Sprague-Dawley and...

متن کامل

Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension.

Endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein and NO production are increased in hypoxia-induced hypertensive rat lungs, but it is uncertain whether eNOS gene expression and activity are increased in other forms of rat pulmonary hypertension. To investigate these questions, we measured eNOS mRNA and protein, eNOS immunohistochemical localization, perfusate NO product levels, an...

متن کامل

Dual sensory innervation of pulmonary neuroepithelial bodies.

The characteristics of the different populations of sensory nerve terminals that selectively contact pulmonary neuroepithelial bodies (NEBs) in rat lungs were investigated after chemical denervation with capsaicin and compared with control lungs. Vagal calbindin D28k and P2X(3) purinoceptor immunoreactive (IR) afferent nerve terminals contacting NEBs appeared to have their origin in the nodose ...

متن کامل

Differences in basal cannabinoid CB1 receptor function in selective brain areas and vulnerability to voluntary alcohol consumption in Fawn Hooded and Wistar rats.

AIM To specify the functional activity of cannabinoid CB1 receptor in alcohol-preferring Fawn Hooded and alcohol nonpreferring Wistar rats under naïve conditions. METHOD Cannabinoid CB1 (WIN-55,212)-stimulated [35S]-GTPgammas binding autoradiography, and cannabinoid CB1 receptor gene expression were measured in rats of both strains that received only water. RESULTS Cannabinoid CB1 receptor ...

متن کامل

Immunohistochemical Characterization of the Chemosensory Pulmonary Neuroepithelial Bodies in the Naked Mole-Rat Reveals a Unique Adaptive Phenotype

The pulmonary neuroepithelial bodies (NEBs) constitute polymodal airway chemosensors for monitoring and signaling ambient gas concentrations (pO2, pCO2/H+) via complex innervation to the brain stem controlling breathing. NEBs produce the bioactive amine, serotonin (5-HT), and a variety of peptides with multiple effects on lung physiology and other organ systems. NEBs in mammals appear prominent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2004